Optimized particle-mesh EwaldÕmultiple-time step integration for molecular dynamics simulations
نویسندگان
چکیده
We develop an efficient multiple time step ~MTS! force splitting scheme for biological applications in the AMBER program in the context of the particle-mesh Ewald ~PME! algorithm. Our method applies a symmetric Trotter factorization of the Liouville operator based on the position-Verlet scheme to Newtonian and Langevin dynamics. Following a brief review of the MTS and PME algorithms, we discuss performance speedup and the force balancing involved to maximize accuracy, maintain long-time stability, and accelerate computational times. Compared to prior MTS efforts in the context of the AMBER program, advances are possible by optimizing PME parameters for MTS applications and by using the position-Verlet, rather than velocity-Verlet, scheme for the inner loop. Moreover, ideas from the Langevin/MTS algorithm LN are applied to Newtonian formulations here. The algorithm’s performance is optimized and tested on water, solvated DNA, and solvated protein systems. We find CPU speedup ratios of over 3 for Newtonian formulations when compared to a 1 fs single-step Verlet algorithm using outer time steps of 6 fs in a three-class splitting scheme; accurate conservation of energies is demonstrated over simulations of length several hundred ps. With modest Langevin forces, we obtain stable trajectories for outer time steps up to 12 fs and corresponding speedup ratios approaching 5. We end by suggesting that modified Ewald formulations, using tailored alternatives to the Gaussian screening functions for the Coulombic terms, may allow larger time steps and thus further speedups for both Newtonian and Langevin protocols; such developments are reported separately. © 2001 American Institute of Physics. @DOI: 10.1063/1.1389854#
منابع مشابه
Efficient multiple-time-step integrators with distance-based force splitting for particle-mesh-Ewald molecular dynamics simulations
We develop an efficient multiple-time-step force splitting scheme for particle-mesh-Ewald molecular dynamics simulations. Our method exploits smooth switch functions effectively to regulate direct and reciprocal space terms for the electrostatic interactions. The reciprocal term with the near field contributions removed is assigned to the slow class; the van der Waals and regulated particle-mes...
متن کاملEfficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems
The particle–particle particle–mesh ~P3M! method for calculating long-range electrostatic forces in molecular simulations is modified and combined with the reversible reference system propagator algorithm ~RESPA! for treating the multiple time scale problems in the molecular dynamics of complex systems with multiple time scales and long-range forces. The resulting particle–particle particle–mes...
متن کاملParticle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations
The parallel implementation of a molecular dynamics code suitable for simulationof general molecular systems using spatial{decomposition methods is discussed. Long-range Coulombic forces are computed using a particle-mesh Ewald (PPPM) technique. A multiple{timescale integration method known as rRESPA is also used to improve the computational eeciency. The load{balancing and interprocessor commu...
متن کاملPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
متن کاملParallel Programming Library for Molecular Dynamics Simulations
A parallel programming library for molecular dynamics (MD) simulations is described and applied to the recently proposed split integration symplectic method (SISM) for MD simulation. The results show that for a system of 1024 linear chain molecules with an integration step of 4.5 fs parallel execution of SISM with the particle–particle interactions (PPIs) library on 32 computers gives efficienc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001